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Abstract the input value and compared to a fixed threshold, in-

stead of using the dither value itself as the threshold. It
Blue-noise dither halftoning methods have been founaan easily be shown that these two implementations are
to produce images with pleasing visual characteristicanathematically equivalent, however, in some cases, the
Results similar to those generated with error-diffusionsecond approach may be more computationally efficient.
algorithms can be obtained using an image processing
algorithm that is computationally much simpler to imple-
ment. This paper reviews and compares the various tech{xy)
niques that have been used to design blue-noise dither Y

O(xy)

matrices. In particular, a series of visual cost function [Come 200y
based methods, a several techniques that involve desigRgolumn#) *d P

ing the dither matrices by analyzing the spatial dot dis- = -Od Mx . . '

tribution are discussed. Ways to extend the basic d'g}ir;;,aé)”x

blue-noise dither techniques to multilevel and color out-_y (row#), - Yd
put devices are also described, including recent advances

in the design of jointly optimized color blue-noise dither Figure 1. Flow diagram for basic ordered-dither algorithm.
matrices.

1 Introduction 1(xy) o(xy)

=+ Threshold

Many printing devices are binary in nature, and are there-
fore incapable of producing continuous tone images,((cdumn#)
Digital halftoning techniques are used to create the ap- _
dither matrix
pearance of intermediate tone levels by controlling the dxg v
spatial distribution of the binary pixel values. Ordered- %
dither, sometimes referred to as periodic dither, is a
simple digital halftoning algorithm that has been used-igure 2. Flow diagram for additive ordered-dither implementation.
for many applications. The origin of this technique can
be traced back at least as far as 196®ne common
implementation of the basic ordered-dither algorithm is A third implementation of the ordered-dither algo-
shown in Fig. 1. In this case, a dither vall(g,y,) is rithm is shown in Fig. 3. In this case, instead of storing
determined by modularly addressing a “dither matrix”a dither matrix, a set of bitmaps are stored correspond-
with the row and column addresses of the image pixelsng to the halftone pattern that should be used for each
The size of the dither matrix in this examplévigx M,. gray level. The input value is used to select one of the
The dither value is then used to threshold the input corbitmaps, and the pixel row and column address are used
tinuous tone image valuéx,y) to determine a halftoned to modularly address the selected bitmap to determine
output valued(x,y). If the input value is greater than the the output pixel value. It can be seen that this imple-
dither value, the output pixel is set to “on.” Conversely,mentation has the advantage that fewer computations are
if the input value is less than the dither value, the outputequired to process each pixel, at the expense of a larger
pixel is set to “off.” The modulo operations have the ef-memory requirement. This method can be used to ob-
fect of tiling the dither matrix across the image in a retain results that are equivalent to those obtained in the
peating pattern. first two implementations if the bitmaps correspond to
There are several other implementations of the bathose that would be obtained by thresholding the dither
sic ordered-dither algorithm that are commonly usedmatrix at each of different input values.
One variation, shown in Fig. 2, is quite similar to that Note that any series of halftone patterns that can be
shown in Fig. 1, except that the dither value is added tgenerated with the methods of Figs. 1 and 2, can also be
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generated with the method of Fig. 3. However, the rematrix represents an example of a class of dither matri-
verse is not true. This is because in the dither matrices sometimes referred to as “dispersed-dot dither.” The
implementation the halftone patterns are forced to bgeneral characteristic of dispersed dot dither matrices is
correlated so that once a certain pixel in the dither pathat they avoid placing dots near each other whenever
tern has been turned on at some input value, it will stapossible.

on for all higher input levels. With the dither bitmaps A particular form of the dispersed-dot ordered-dither

approach, this constraint is not present. For example, technique known as “blue-noise dither” is the topic of

certain pixel could be “off” for an input value of 150, the current paper. This approach was first reported by
“on” for an input value of 151, and “off” again for an Sullivanet al,” and has since been investigated by many
input value of 152. In practice, the limitations associ-other researchers including Mitsa and Parkand

ated with the methods of Figs. 1 and 2 do not pose anylichney? Blue-noise dither techniques are related to
serious problems because it is usually desirable, frorthe methods of Limband Bayef, in that they are all
an image quality point of view, to use correlated patdirected towards reducing the visibility of the halftone
terns that can be implemented either way. The basipatterns by controlling the frequency spectrum of the
equivalence between the bitmap and threshold matrigpatial modulation. Generally, blue-noise dither matri-
implementations for correlated halftone patterns wages are designed to minimize the low frequency content
noted by Grangeet al3 and maximize the high frequency content of the half-
tone patterns. (The term “blue-noise” originates from the
) fact.that blue I_ig_ht corresponds to the high frequency
i 4 portion of the visible spectrum.) Because the human vi-
( sual system is less sensitive to high spatial frequencies,
. blue-noise dither patterns are less visible to a human
X (column #) *d dither O(xy) observer. Generally, the halftone patterns associated with
blue-noise dither are significantly less visible than clus-
tered-dot dither, and do not have the annoying texture
y (row #) - Yd, changes associated with Bayer dither.
y Blue-noise dither patterns are actually quite similar to
Figure 3. Flow diagram for ordered-dither bitmap implementation. the halftone patterns that are produced with error diffusion
halftoning algorithms, but the implementation is
computationally more efficient. In fact, error diffusion
The number of unique entries in the dither matrixmethods have sometimes been referred to as “dithering with
determines the number of gray levels, which can be prdslue-noise™° which can be a source of some confusion. In
duced in the output image. For example, iXLB6 dither  the graphic arts halftoning field, the terms “stochastic
matrices are used, it is possible to produce 287 ( screening” and “frequency-modulation screening” have
M, + 1) gray levels. If smaller matrices are used, théoeen used to describe both blue-noise dither techniques,
period of the dither pattern is smaller, but the number o&s well as error-diffusion methods.
producible gray levels falls correspondingly. However,
despite the loss of gray levels, the reduction in the pe-
riod of the dither patterns can sometimes provide an 2 Review of Blue-Noise Matrix
image quality advantage, particularly when using a clus- Generation Methods
tered-dot dither matrix. A variation of the ordered-dither
approach has recently been developed to allow the udéis section reviews the various techniques that have
of smaller dither matrices while maintaining the full been used to generate blue-noise dither patterns.
number of gray levels at the expense of adding a small
amount of randomness to the imdge. 2.1 Minimum Visual Cost Techniques
The arrangement of the values stored in the dither Sullivan, and Miller and Sullivé have described
matrix determines the dot pattern that is formed at each series of methods for designing blue-noise dither ma-
gray level. Clustered-dot dither matrices represent ontices based on the use of stochastic optimization meth-
class of dot patterns. This approach attempts to mimiods to minimize a visual cost function.
the halftone dot patterns produced by conventional
graphic arts halftone screens. Another type of dithe2.1.1 Uncorrelated Patterndn their initial investiga-
matrix is the well-known “Bayer matriX"This solu- tion, the halftone patterns designhed by Sullieaml.
tion was designed to maximize the lowest spatial frewere optimized for individual gray levels to be used for
guency in the halftone pattern for any given gray leveltint fills of uniform image regions. The halftone patterns
The idea being that high frequencies are less visible towere determined using stochastic annealing techniques
human observer than low frequency values. It can be se¢a minimize a cost function based on the frequency re-
that the Bayer matrix is closely related to the determinsponse of the human visual system. The halftone pat-
istic dither described by LimbOne characteristic of the terns for each gray level were uncorrelated with the
Bayer matrix is that the perceived texture associated withalftone patterns for any other gray level. Because the
the halftone patterns changes quite dramatically as patterns were uncorrelated, it was necessary to use an
function of gray level. As a result, images having smoothmplementation like that shown in Fig. 3 to apply the
gradations are apt to exhibit texture contours. The Baygratterns to an image.
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The cost function used to estimate the visibility ofsponding human visual system sensitivity. The funda-
the halftone patterns is given by mental periodic nature of the discrete Fourier transforms
properly accounts for the fact that the dither patterns are
2 applied in a repeating tiled fashion.
cost = [f|P(rf V(1 ) o0, @ PP Rk
wherep(f,.f,) is the frequency spectrum of the halftone
pattern, and/(f,.f) is the frequency response of the hu-
man visual system. It can be seen that the effect of thi
cost function is to weight the frequency content of the
halftone pattern by the ability of the human visual re-
sponse to detect it. Thus halftone patterns that move tt
frequency content to a region of the frequency spectrur e
where the human visual system is less sensitive will hav EO
a correspondingly lower cost.
A model of the low-contrast photopic modulation
transfer function was used to characterize the huma
visual system:
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where the constants, b, ¢, andd are calculated from Figure 4. Low-contrast photopic modulation transfer function
empirical data to be 2.2, 0.192, 0.114, and 1.1 respeof human visual system.

tively, 7 is the normalized radial spatial frequency in

cycles/degree of visual subtense, &pds the frequency

at which the weighted exponential peaks. To account for Ideally, the cost for every possible arrangement of
angular variations in the human visual function sensithe dots in the halftone pattern could be computed and
tivity, the normalized radial spatial frequency is com-the halftone pattern with the lowest cost could then be
puted from the actual radial spatial frequency using aselected. However, in practice, the number of possible
angular-dependent scale function arrangements is so large that this is impossible. As a re-

sult, it is necessary to use combinatorial optimization

= f techniques such as stochastic anneéaliffgor genetic
f =50 (3)  algorithmg?:4 to minimize the cost function. For most
of the blue-noise dither optimization work described in
_[r2 . p2\V? L this section, the stochastic annealing approach was used.
where f = (fx +fy) » ands(@) is given by A flowchart showing an implementation of the stochas-
tic annealing process for optimizing halftone patterns is
$(0) = 1-w cos(40) + 1+w’ (4) shownin Fig. 5. The algorithm comprises the following
steps:
with w being a symmetry parameter, and 1. Define an initial halftone pattern having the desired
of. O number of dots, and compute a corresponding ini-
9:arctanEiB (5) tial cost value. The initial halftone pattern can be
e formed randomly, or alternatively some predefined

A plot of this visual MTF function is shown in Fig. 4, halftone pattern can be used. The initial cost is tem

which illustrates the low-pass nature of visual system
and the reduced sensitivity at 45°. To apply this MT
function for a specific viewing distance and dot pitch,
the angular frequency values must be related to the cog-
responding spatial frequency values using straightforzl'
ward geometrical relationships. '

Because the dither pattern is specified for a discrete
set of pixel values, a discrete form of Eq. (1) was used
to compute the cost

M,-1M,-1

s 2
> [PVl
J=0

whereP; is the (,j)th element of the discrete Fourier
transform of the halftone pattern, akf is the corre-

cost = (6)

1=0

porarily labeled as the “old cost.”

Randomly select a pair of pixels in the halftone pat-
tern and interchange them to form a new halftone
pattern.

Compute a cost value for the new halftone pattern.
Calculate a random numbebetween 0 and 1, and
the Boltzmann test statistag

o=on 2250

whereA cost is the new cost minus the old cost, and
the parameteT is set initially so that a large per-
centage, e.g., 80%, of new halftone patterns are ac-
cepted in the following step.

Acost
T

(7
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5. Comparejtoz. If q> zthe new halftone pattern is shows the value of the visual cost function at successive
retained and the new cost computed in step 3 is reemperatures in the optimization process. It can be seen
named as the old cost.qf< z, the halftone pattern that the stochastic annealing process gradually reduces
is returned to its previous state. the visual cost until a plateau is reached where the cost

6. After many iteration of steps 2-5 above, e.g., 1000¢cannot be improved further.
reduce the parametdrto KT, wherek <1, e.g.,

K = 0.95. Mgt e __-._. R Er T
7. WhenT is sufficiently small so that the costs at suc- PO CoentTeT T Lt
cessive values of are no longer changing signifi- DRI R R
' . H . _y ] . e, .=
cantly, or after a fixed number of changes have been A L
made tdl, e.g., 500, the process is complete and the B
final halftone pattern is stored. R T A S A M
e T o ! S 1
e et ., K . . a2
Define initial dither T I I
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Initial visual cost Do, e
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Figure 6. Pixel positions of (a) initial random pattern, and

(b) final minimum cost pattern.

Figure 5. Flowchart for stochastic annealing algorithm.
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In the initial investigation of Sullivaat al., the sto-
chastic annealing process was repeated independently
for every gray level to form a set of uncorrelated blue-
noise halftone patterns. Because of the large number of2
iterations that were required to optimize the patterns,
powerful computers were necessary to determine solu-
tions in a reasonable amount of time. Even with the use
of supercomputers, it can still take several hours or more
to design a set of patterns for even modest size (1)
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dither matrices. Figure 6 shows an example of an initial doptimize
randomly designed pattern, compared with an optimized o , , , , ,
pattern deterr_nlned using the above process. In this case, 00 10 20 30 40 50 60
a 128x 128 bitmap was computed. The corresponding ,

Spatia Frequency

angularly averaged frequency spectra for these two pat-
terns are shown in Fig. 7. It can be seen that the lowigure 7. Amplitude of frequency spectrum averaged over all
frequency content of the optimized pattern is greatly reangles for (a) initial random pattern, and (b) final minimum
duced relative to that of the random pattern. Figure &ost pattern.
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Figure 8. Visual cost at successive temperatures in the sto-

chastic annealing optimization process.

Other types of cost functions can also be used to
estimate the visibility of the halftone patterns. One ap-
proach is to calculate the variance of the visually
weighted spectral powers rather than summing them as
in EQ. (6). This has the effect of trying to suppress any
strong spikes in the perceived power spectrum. Another
approach would be to use a spatial channel model of the
visual system to determine the visual c8st.

Although the results obtained using this method are
quite pleasing when applied to uniform regions, they do

Determine minimum cost
halftone pattern for
initial input level

r

Select next input level
and initialize the
halftone pattern

Y

Determine which pixelsin
the halftone pattern can be
changed

Y

Determine which pixelsin
the halftone pattern should
be changed to minimize
cost

More Yes

levels?

No

Combine halftone patterns for
all input levelsto form dither
matrices

( Store final result )

not produce desirable results when applied to continurigure 9. Flowchart for computing correlated blue-noise pat-
ously varying images. This can be traced to theerns using sequential optimization

uncorrelated nature of the halftone patterns where the
pattern at one gray level has been derived independeft
of all other gray levels. As a result, objectionable dot
patterns are formed in regions of the image that contain
smooth gradations from one gray level to another.

2.1.2 Correlated PatternsRealizing the limitations of
the uncorrelated blue-noise patterns, Sullivan and Ray
later generalized the blue-noise dither pattern gener&-.
tion techniques to produce correlated blue-noise pat-
terns'® Because of the correlated nature of these patterns,
they produced much better results when applied to con-
tinuous tone images, and additionally they could be
implemented using the conventional dither matrix tech-
niques shown in Figs. 1 and 2.

The determination of the correlated halftone patterns
becomes somewhat more complicated than the
uncorrelated case due to the fact that the halftone pat-
tern for one level must be designed taking into accoun.
the halftone patterns for the other levels. The first at-
tempts to compute correlated blue-noise halftone pat-
terns used a sequential optimization approach to
determine the patterns for each level one at a time. Al-
though later methods were developed to optimize all of
the levels simultaneously, the sequential approach still
holds significant advantages from a computation time
point of view. 4.

A flowchart showing the basic process for sequen-
tially optimizing correlated blue-noise dither patterns is
shown in Fig. 9. The steps of this process are as follows:

Form an optimized pattern for an initial input level.
Generally this can be done using the stochastic an-
nealing method described in Sec. 2.1.1 for the
uncorrelated halftone patterns. The initial input level
is commonly taken to be 128, although it has been
found that better results can sometimes be obtained
with other initial values.

Select the next input level in the sequence and ini-
tial the halftone pattern. A consecutive sequence
could be used where the input levels were optimized
by first incrementally decreasing, and then increas-
ing the level relative to the initial input level, (e.g.,
127, 126, ..., 1, 0, 129, 130, ..., 254, 255). Alterna-
tively, many other arrangements are possible such
as a sequence based on a binary tree where the in-
tervals are sequentially subdivided, (e.g., 64, 192,
32, 96, 140, 224, ...).

Determine which elements of the halftone patterns
can be changed. Generally this is done by finding
the pixels that are simultaneously “off” in the half-
tone pattern corresponding to the nearest input level
that has already been optimized below the current
input level, and “on” in the halftone pattern corre-
sponding to the nearest input level that has already
been optimized above the current input level.
Determine which changeable elements should be
changed in order to minimize the visual cost. This
can be done using stochastic annealing or other op-
timization techniques.

Chapter Ill—Algorithms—229



5. Repeat steps 2-4 for each of the input levels. visual system PSF that is the sum of a series of visual
6. Combine the resulting halftone patterns for all ofsystem PSFs that repeat at the dither pattern period
the input levels into a corresponding dither matrix o
and store the result. v, (x,y) Z _zv(x—meAx,y—nMyAy), (10)
Because the levels are determined sequentially, t

L L here Ax and Ay are the pixel spacing in the and
levels that are optimized earlier in the sequence geneydirections, respectively. One method to conveniently

ally have a higher quality (lower cost) than those detere termine the effective PSF is to perform an inverse FFT

mined later in the sequence. This is because the decisioggthe human visual function MTF. The periodic bound-

about pixel placement at one level constrain the choic o . . ,
: ry condition assumptions associated with the FFT, natu-
of where pixels can be placed for subsequent levels. This

is the motivation for using a binary tree sequence l:Orally account for the repeating nature of the effective
example, consider the case where an initial level of 12 SF. An example of an effective PSF is shown in Fig. 10.

is used. If the levels are optimized incrementally, hex andy axes in this case give the pixel offset values.

as man : .
as 128 previous optimizations may constrain the opti}{ can be seen that the same PSF value will be obtained

mization for a single level. With the binary tree approachWhenX = 1 and wherx = 15, which reflects the fact that

the maximum number of previous optimizations that af-the dither pattern repeats every 16 pixels. Dhasl is

fect the current optimization will be much smaller 1 pixel to the right of a dot centered at (0,0), arwd15
The blue-noise dither matrices that were initially's 1 pixel to the left of the same dot in the next period of

: : he dither pattern. An equivalent result can be obtained
computed using this approach produced much better re- performing the summation given in Eq. (10), but a

sHuIts than those obtained using the uncorrelated patterry rge number of terms must be included to obtain accu-
owever, the images were still somewhat marginal iN_te results
guality. One of the principle reasons for this is that the '
practical dither matrix size was limited to approximately

16 x 16 due to computational constraints. With this ma-

trix size, it was not possible to totally eliminate the ap-

pearance of low-frequency periodic artifacts. The use @ o004
larger dither matrices not only reduces the fundamente
frequency of the halftone pattern, but additionally pro-
vides more degrees of freedom during the optimizatiot .|
process.

0.03

\
'/i‘:\\fo /'

PSF

\

An effort was made to speed up the optimization °% “‘}\\\k‘\,‘/' ‘\Qfgf’:‘q/' “‘
process to make it possible to compute larger dithe | W\ < “\’,’0’;‘:}3] ‘\i\fg:f;gg/' “"
matrices. The use of more efficient programming tech Q&‘:‘,’“‘\\\'{é{éfﬁl““‘&\‘%ﬂ"‘%
niques and faster computers provided some improve -oo \\\"‘Q\‘.QA\\\’K“:"?@““WQ&Q“‘
ment, but by far the largest speed gains came by movir \\\{}:‘3?““%‘:::3,75/ T 5
the computation of the cost function from the frequency o e SV .
domain to the spatial domain. By Parseval’'s Theorem i v -5 s 0

can be shown that the cost function given in Eq. (1) ca s s

be rewriiten as Figure 10. Effective point spread function for 286 dither

_ N 9 matrix. Viewing distance was assumed to be 30 inches, and
cost ‘”|p<x’ ¥)*v(x, y)| dxdy, (8) printer was assumed to be 300 dpi.

where * represents convolutiop(x,y) is the halftone

pattern, ands(x,y) is the inverse Fourier transform of Generally, one would expect it to be faster to calcu-
the human visual system sensitivity, which can be intertate the Fourier transform required to compute the cost
preted as the human visual system point-spread fundunction using Eq. (6), rather than the convolution nec-

tion (PSF). essary to compute the cost function using Eq. (9). How-
The corresponding discrete form of the spatial do-ever, in this case there are several factors that make it

main cost function is possible to obtain much faster results with the convolu-

tion. First of all, since the halftone pattern consists only

MM, e 2 of ones and zeros, the multiplications normally associ-

cost = pA JZO |(p v)ij| ’ (9)  ated with the computation of a convolution can be elimi-

nated. In this case, the convolution simply becomes a
where 0*Vv),; is the {,j)'th element of the perceived half- summation of a set of point-spread functions centered at
tone pattern given by discrete convolution of the halfthe dot positions. Secondly, during the optimization pro-
tone pattern with the human visual function system PSFkess the convolution can quickly be recalculated as the
Noted that the halftone pattern generated by an ordere@iitmap is perturbed, since it is only necessary to modify
dither process will be periodic, hence the discrete conthe contributions to the summation corresponding to the
volution must take this into account by including pixels that are changed. The move from the frequency
contributions from surrounding dither arrays. In prac-domain cost computation to the spatial domain cost com-
tice, this is most easily done by computing an effectiveputation resulted in more than a *0nprovement in
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computation speed. It is currently possible to compute g&isual cost. The advantage of this steepest-descent ap-
128x 128 solution in about 2 days on a DEC Alphaproach is that the computation time is greatly reduced.
2100-4/275 computer. With the frequency domain apHowever, the disadvantage is that the solution does not
proach it would only have been possible to compute aecessarily represent a global minimum for the visual
16 x 16 matrix in that same time frame. cost function.

One approach that can be used to speed up the com- A sample image produced using a 22828 blue-
putation of the blue-noise patterns further is to use aoise matrix is shown in Fig. 11(a). The dither matrix
steepest-descent type of optimization technique, ratharsed to make this image was generated by using sto-
than a stochastic optimization technique. In this caseshastic annealing to determine an optimized halftone
instead of randomly adding/subtracting the dots to everpattern for gray level 100. The steepest descent optimi-
tually minimize the visual cost, a visual cost value iszation approach described above was then used to se-
determined corresponding to every possible place thatguentially optimize the remaining gray levels. For
dot can be added/subtracted. The position correspondemparison, images generated using a 1228 ran-
ing to the lowest cost position is then chosen. For thislom (white-noise) dither matrix, a 2616 Bayer dither
approach, the initial pattern for the first level will gen- matrix, and an 1& 16 clustered-dot dither matrix are
erally need to be determined using a stochastic optimshown in Figs. 11(b) to 11(d). (The clustered-dot dither
zation technique, or some alternate approach, but thgattern was created by tiling an 8 x 8 pattern into a
remainder of the halftone patterns can be determined k6 x 16 matrix and adjusting the thresholds to obtain 256
sequentially adding/subtracting dots that minimize theaunique values.)

@) (b)

(©) (d)
Figure 11. Images generated using (a) 22828 blue-noise dither matrix, (b) 128128 random (white-noise) dither matrix,
(c) 16x 16 Bayer dither matrix, and (d) 616 clustered-dot dither matrix.
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The visual cost as a function of gray level for thesaeady placed due to the correlated nature of the halftone
matrices is shown in Fig. 12. The visual cost was compatterns. The patterns must therefore be slightly less
puted using Eq. (9) with a viewing distance of 20 in.,optimal than the solution for the first level. Most people
and a dot pitch of 300 dpi. For purposes of comparisomwould judge that the blue-noise matrix result is prefer-
the smaller Bayer and clustered-dot matrices were tiledble to the Bayer matrix result because of the more con-
to a 128x 128 size before computing the cost values. Itsistent image texture characteristics.
can be seen that the clustered-dot and random dither
matrices have the highest visual cost. This is consister®. 1.3 Simultaneously-Derived Correlated Patterig-
with the overall higher visibility of the halftone patterns other related approach for computing correlated blue-
for the corresponding images. It should be noted thatoise dither matrices has been develofdd.this case,
although the visibility of the white-noise and clustered-the dither patterns for all the gray levels are computed
dot halftone patterns may be similar, the clustered-dagimultaneously rather than sequentially. The advantage
patterns are generally found to be less objectionable. Thi# this approach is that it will not penalize the image
demonstrates that the visual cost may not always be thuality for patterns that are computed later in the se-
only factor that influences the visual objectionability. quence. To accomplish this, a cost function is defined

that combines the visual cost for all of the different gray
levels. One of the simplest forms for the combined cost
0 ' ' ' function is

bluenoiss ——— Bayer ] 55 i’'»
C= %(Ct)p% , (12)
=

aAb e white-noise  ----- clustered dot 7]

whereC, is the visual cost for a particular tone level
andp is a positive constant. |§ is taken to be 2,this
result is simply the RMS visual cost for all threshold
levels. Larger values g have the effect of weighting
the cost values for tone levels with larger errors more
strongly.

One problem with the combined cost function given
in Eq. (11) is that the fundamental visual cost can vary
quite widely as a function of tone level . In particular,
tone levels near the dark and light end of the tone scale
typically have smaller cost values than midtone levels.
As a result, the cost function preferentially treats the tone
Sl levels with higher cost values. One approach that can be

0 64 128 192 256 used to minimize this effect is to normalize the cost val-
ues before they are combined

log visual cost

gray level
Figure 12. Visual cost as a function of gray level for the dither

/p
matrices used in Fig. 11. ss 0 C, Ef]%l

C = b
BACE (2
Overall, the visual costs for the Bayer matrix and

the blue-noise matrix are substantially lower than thavhere <C,> is the average cost calculated for a series of
visual costs for the clustered-dot and white-noise patrandom variations of the matrix elements.

terns. Although the average visual cost levels are quite The optimization process used for the simulta-
similar, it can be seen that the visual cost for the Bayemeously derived patterns can be very similar to that de-
matrix fluctuates much more widely with gray level thanscribed above to determine optimized patterns for
does the visual cost for blue-noise matrix. This reflectsndividual gray levels. For example, the stochastic an-
the fact that the Bayer matrix produces distinct changesealing process shown in Fig. 5 can be used with only
in the texture as a function of gray level. At the graysmall modification:

levels where very regular patterns are formed, the cost

for the Bayer matrix is lower than that of the blue-noisel. Define an initial dither matrix and compute the cor-
matrix, however, at intermediate gray levels, the Bayer responding initial combined cost value. The initial
matrix gives a higher visual cost. The visual cost for the  dither matrix can be formed randomly, or alterna-
blue-noise matrix can be seen to be much more uniform tively some predefined dither matrix can be used.
than that of the Bayer matrix, reflecting the fact that the  The initial combined cost will temporarily be known
overall texture is quite constant with gray level. There  as the “old total cost.”

is a small dip in the visual cost near the gray level oR. Randomly select a pair of elements in the dither ma-
100, which corresponds to the starting gray level for the trix and interchange them to form a new dither matrix.
optimization process. This results from the fact that th8. Compute a new combined cost value for the new
optimization process cannot move the dots that are al- dither matrix.
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4. Calculate the Boltzmann test statiggicand a ran-
dom number between 0 and 1.

same time. To determine halftone patterns that simulta-
neously meet both requirements, an optimization tech-

5. Compareq to z. If q> z the new dither matrix is nique that is similar to a “projection-on-convex-sets”
kept and the new total cost computed in step 3 isipproach is used. Essentially, a set of independent con-

renamed as the old total cost.dk z, the dither
matrix is returned to its previous state.

6. After many iteration of steps 2-5 above, e.g., 1000,
reduce the parametdrto kT, wherek <1, e.g.,

K =0.95.

7. WhenT is sufficiently small so that the total costs
at successive values dfare no longer changing sig-
nificantly, or after a fixed number of changes have
been made td, e.g., 500, the process is complete
and the final dither matrix is stored.

While the simultaneous optimization of the differ-
ent tone levels would seem to be advantageous in theory,
there are several practical factors that limit the useful-
ness of this technique in practice. First, the computa-
tional complexity of the joint cost function slows the
optimization process substantially. This puts a practical
limitation on the size of the dither matrix that can be
computed. With current computer resources a &4
dither matrix takes as long as a week to converge. Addi-
tionally, the optimization process seems to be more prone
to getting caught in a local minimum of the cost func-
tion than the sequential optimization methods. For ex-
ample, a 16< 16 solution was computed using this
technique that yielded moderate image quality. A<&2
solution was then computed that produced a lower per-
ceived image quality. To compare the visual costs for
the two solutions, a 32 32 matrix was made by tiling
together four copies of the 2616 matrix. The total cost
for the replicated 16x16 was substantially lower than that
of the actual 3% 32 solution. Because a lower cost so-
lution was shown to exist, this indicates that the optimi-
zation process for the 3232 matrix was not able to
converge on the global minimum of the cost function.
This is probably due to the high dimensionality of the
problem, combined with the complexity of the cost func-
tion. It is expected that if the true global minimum could
be found, this approach would give very good results.
However, the optimization techniques that have been

straints are cyclically applied until a convergent solu-
tion is reached.

Figure 13 shows a flow diagram of the process used

to design the halftone pattern for a first gray level (typi-
cally a 50% gray).

Load halftone pattern with
binary seed pattern

Y

Compute frequency
spectrum of the
halfone pattern

Modify the frequency
spectrum according to the
power spectrum constraint

Y

Compute inverse Fourier
transform to determine
modified halftone pattern

¥

Impose binary/coverage
constraints to form a new
halftone pattern

Has solution
converged ?

tested have been unable to get very near to the globgigure 13. Iterative constraint technique for optimizing blue-

minimum for dither matrices of reasonable size.

2.2 Spatial Dot Distribution Techniques 1.

A number of other blue-noise halftone pattern gen-
eration methods have been developed that are based &n
evaluating the spatial distribution of dots in the halftone
pattern, rather than the computation of a visual cost func.
tion value.

2.2.1 Iterative Constraint Technique#&n approach for
designing blue-noise dither matrices has been developed
by Parker and Mits&. that attempts to produce halftone
patterns that simultaneously satisfy two different crite-
ria. First, the patterns should have particular power spec-
trum characteristics. Second, the patterns must be binary
in nature, and must have the desired fractional area cov-
erage. It is quite simple to design patterns that meet one
or the other of these criteria, but not both of them at the

noise halftone patterns.

First the halftone pattern is initialized with a seed
pattern. Typically this would be a white-noise pattern.
The Fourier transform of the halftone pattern is com-
puted to determine its frequency spectrum.

The frequency spectrum is modified according to a
power spectrum constraint. In general, the power
spectrum constraint can be used to impose any par-
ticular power spectrum characteristics to the half-
tone pattern. In the examples presented by Parker
and Mitsa, they are attempting to produce patterns
with power spectrum having no energy below a prin-
ciple frequency. This principle frequency is a func-
tion of the halftone pattern gray level. By imposing
this constraint they are attempting to mimic the fre-
guency spectrum characteristics of an error diffusion
pattern. They impose the constraint by comparing the
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radiallyaveraged power spectrum of the halftone patadaptively computing the filter necessary to produce the
tern to the aim power spectrum to compute a fredesired power spectrum as was shown in Eq. (13), a fixed

guency domain filter filter was used at each gray level. In general, a smoothly
varying low-pass filter was used, such as a Butterworth

P/(f.,8) filter, or a Gaussian filter. The cutoff frequency of the

D,(f,,8) P’ (13)  filter is still adjusted as a function of gray level to ac-

count for the variation in the principle frequency of the
wheref, is the radial frequency is the gray level, halftone pattern.
P.(f.,0) is the radially averaged power spectrum for Rolleston and Cohéh have also presented a simi-
the halftone pattern, ar®l (f,,g) is the desired radi- lar approach where they create noise patterns with pre-
ally averaged power spectrum. The frequency dscribed two-dimensional correlation functions for the
main filter D,(f,,g) is applied to the frequency spec- purpose of using them as masks for digital halftoning.
trum of the halftone pattern to determine a modifiedin this case, instead of designing the halftone patterns in
frequency spectrum. a sequential fashion and afterwards combining the pat-

4. Once the frequency domain constraint has been aperns to form a dither matrix, the entire dither matrix is
plied, an inverse Fourier transform is applied to theoptimized sinultaneously. This is done by initializing the
modified frequency spectrum to determine a modi-dither matrix with uniformly distributed random noise.
fied halftone pattern. The noise matrix is then transformed to the frequency do-

5. This modified halftone pattern now has the desirednain, where a power spectrum constraint is applied. Gen-
blue-noise characteristics, however, it no longer ierally, the application of this constraint involves simply
a binary pattern. It is, therefore, necessary to immultiplying the frequency spectrum by a binary masking
pose the constraint that the halftone pattern must bkinction. The filtered spectrum is then transformed back
binary, and that a certain number of dots must beo the spatial domain where a constraint is imposed that
turned on. This is done by computing an error arrayorces the noise to have a uniform probability density
that is given by the difference between the previousgunction. This insures that the number of dots in the re-
halftone patternh(i,j) and the modified halftone sulting halftone pattern will be linear with the input tone
pattern,h'(i,j), level. These steps are then applied iteratively until con-

SN g - vergence is reached. In this manner, it is possible to gen-
e(i.i) = h(i.j) =h(ij). (14) erate halftone patterns with a variety of power spectra,
The error values are rank ordered, and the pairs of limcluding those with blue-noise characteristics.
and 0’s corresponding to the largest error values
are interchanged to form a new halftone pattern. 2.2.2 Void-and-Cluster TechniqueUlichney has pro-

6. If the total mean square error for this iteration isposed a simple technique for generating blue-noise pat-
below some threshold, the solution is accepted. Othterns that he refers to as the “void-and-cluster” method.
erwise, the steps 2 to 5 are repeated using the neWihe general principle employed in the design of dither
halftone pattern until convergence is reached. matrices using this technique is that large clusters or

voids of dots should be avoided. The optimization pro-
Once the halftone pattern for the first gray level iscess involves two basic phases. First, a dither pattern is
determined, a similar method is used to sequentially ddformed for an initial gray level. Next, dither patterns are
termine the halftone patterns for the remaining gray levsequentially formed for the remaining gray levels.

els. In this case, a single pass technique is applied, rather A flow chart for the first phase of the void-and-clus-

than the iterative approach just described. To construder optimization process is shown in Fig. 14. The first

the blue-noise pattern for the next highest gray levestep is to choose an initial binary dither pattern. This
above a previously computed pattern, the previous solunitial pattern may be randomly formed, or may corre-
tion is used as seed level and steps 2-4 of the abowpond to the pattern that is obtained with an existing
method are used to determine a modified halftone pasolution, such as the Bayer matrix. The initial pattern is
tern. As before, and error arr&ai,j) is computed, and then examined to find the tightest “cluster” of dots. All
the errors are rank ordered. The number of 1's that musif the pixel locations containing 1's are considered in
be added to the halftone pattern to produce the desirdtis process. The “1” at the location of the tightest clus-
gray level are determined. The 0’s in the previous soluter is then removed. The new pattern is then examined
tion corresponding to the highest error values are reto find the location of the largest “void,” and a “1” is
placed with 1's to form a new halftone pattern. Thesenserted at this location. If the location of the largest void
steps are repeated to determine the halftone patterns figrthe same as the location that the “1” was just removed
each gray level above the initial gray level. The grayfrom, then the process has converged. In this case the
levels below the initial gray level are computed in a simi-*1” is restored to initial position and the procedure is
lar fashion. The only difference being that ones in théerminated. With each iteration, the voids should get
previous halftone pattern are replaced by 0’s. Throughsmaller, and the clusters should get looser.

out this process, the aim power spectrum is adjusted at To determine the locations of the largest void and

each gray level to account for the change in the prineluster, Ulichney defined a filter function that he con-

ciple frequency. volved with the dot pattern. The location of the mini-
A small modification to this basic technique was mum and maximum values of the filtered dot pattern then
proposed by Yao and Parkérln this case, instead of define the largest void and the largest cluster, respec-
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tively. As with the spatial domain cost function calcula-has been generalized slightly relative to that described
tion described above in Sec. 2.1.2, it is necessary to aby Ulichney.) First the patterns between the initial gray
count for the periodic nature of the dither pattern whenevel and black, and then the patterns between the initial
performing the convolution. This is accomplished usinggray level and white are computed. The first step is to

a modified convolution load an array with an initial binary pattern. The solution
for the previous gray level is used as the initial binary
M2 M2 pattern for the current gray level. Next, the number of
prle,y)= Yy z pm',n")f(m,n). (15) pixels that need to be changed to produce the correct
m==M./2 n=-M,/2 number of dots for the current gray level is determined.

Depending on whether the gray level is currently being
whereM, andM, are the dither array dimensiopgx, y)  incremented or decremented, dots either need to be added
is the dot patterrf(x, y)is the filter functionp«(x, y)is  or removed. If the gray level is being decremented, a

the filtered dot pattern, and number of 1's need to be turned into 0’s to remove dots.
Conversely, if the gray level is being incremented, a
m = (M, + X — m)mod M,, number of O's need to be turned into 1's to add more

(18)  dots. The number of dots that need to be added/subtracted
will depend on the size of the dither array and the num-
ber of allowable gray levels.

n" = (M, +y-n)modM,.
Ulichney used a Gaussian filter function of the form

f(x.y) exp [-§ +y?)¥4(20?)] 17)

for his investigation. He found that a value®m& 1.5
produced the best results.

Load binary pattern
with initial binary pattern

@ Determine the number

of 0's/I's that need
Load binary pattern to be changed
with initial
input patt:
= Find location of
* largest cluster/void
Find location of
tightest cluster ]

(al 1's are candidates)

change the pixel to
toa"0"/"1"

Removethe"1" from the
location of the

tightest cluster
Find location of Have
largest void enough pixels
(al 0's are candidates) been c’r;anged

Yes

Did
removing the "1"
create the largest
void?

Restore the " 1" . .
that was just removed Figure 15. Flow chart for the second phase of the void-and-
cluster optimization process.

The next step is to identify the location of the larg-
Insert a"1" into the est void/cluster in the dot pattern. If dots need to be
location of the largest void added, the largest void is identified. If dots need to be
removed, the tightest cluster is identified. Once the lo-
Figure 14. Flow chart for the first phase of the void-and-clus-cation has been found, the pixel is changedtoa 1 ora 0
ter optimization process. accordingly. This process is repeated until the required
number of pixels have been changed for the current gray
level. The remainder of the gray levels are then processed
Once the halftone pattern for the first gray level isin an identical fashion until a complete set of halftone
determined, the next phase of the void-and-cluster appatterns have been determined for all of the allowable
proach is to sequentially compute the patterns for thgray levels. The resulting halftone patterns can finally
remaining gray levels. A flowchart for this process ishe combined to form a single dither matrix that can be
shown in Fig. 15. (It should be noted that this procedureised in any of the standard dither algorithms.
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Since the void-and-cluster method is effectively alocations where the perceived halftone pattern is low.
“steepest descent” optimization approach, the results thatsing this approach to determine a halftone pattern is
are obtained using this technique are quite dependent @ssentially equivalent to defining a new cost function
the initial starting conditions. For example, if an initial that penalizes large peaks and valleys in the perceived
binary pattern containing a single 1 is used, the finaluminance distribution. Although it could be argued that
matrix is identical to the Bayer matrix solution (alsothe final result obtained with this method may be less
known as a “recursive tessellation” solution). If randomlyoptimal than those obtained with the stochastic optimi-
formed initial binary patterns are used the results areation methods, the quality improvements associated
quite similar to the blue-noise patterns computed usingvith the fact that larger dither matrices can be deter-
the visual cost function methods described above. Themined may outweigh any quality loss from the more sim-
largest advantage of the void-and-cluster approach is thaistic optimization approach.
computation speed of the optimization process. An appropriate name for this technique may be “vi-

It can be seen that the void-and-cluster method hasual void-and-cluster.” It has also been referred to as “elec-
much in common with Mitsa and Parker’s iterative con-trostatic dither” because of a close analogy telaatron
straint technique described in Sec. 2.2.1. In both casedistribution problem. Consider a set of electrons distrib-
a filtered dot pattern is determined. However, Mitsa andited on a planar surface. An electrostatic potential can
Parker perform the filtering operation in the frequencybe computed by summing the potential for each of the
domain, whereas a spatial domain convolution is appliedlectrons. The potential for a point charge is given by
for the void-and-cluster technique. Once the filtered dot
pattern has been computed, it can be seen that the pixel A
positions having the largest errors computed for with the Wx,y) = R’ (19)
iterative constraint technique are analogous to the pixel
positions with the largest voids and clusters determinedhereA is a constant, arid= [(X — %)? + (y — ¥)] ¥4 where
by Ulichney. X, andy, are the coordinates of the point charge. The

overall potential for a set of electrons is given by the
2.2.3 Visual Potential TechniquesiVe have recently sum of the potentials for each of the individual electrons.
investigated a variation of the void-and-cluster techniqud his can be seen to be a convolution of the potential for
that incorporates some of the desirable features of the single point charge at the origin, with a set of delta
sequential visual cost function method described irfunctions corresponding to the positions of the electrons.
Sec. 2.1.2. The most significant difference is that the fil{f these electrons were locked in place, and an additional
ter function is designed using a visual response modeglectron was added to the surface, it would want to go to
Therefore, the largest “visible voids” and “visible clus- the location with the minimum potential. After the elec-
ters” in the halftone pattern will be determined. Addi-tron is placed, the potential function would need to be
tionally, a visual cost function method is generally usednodified to account for the new electron.
to determine the initial halftone pattern. Alternatively, a It can be seen that this is analogous to the present
pattern from a previously determined blue-noise patterrproblem where halftone dots are being positioned instead
or even a pattern generated using an error diffusion abf electrons. The analogy to the potential function for a
gorithm can also be used for the initial pattern. single point charge is the point-spread function for the

Once the initial pattern has been defined, a perceivelduman visual system. Since the perceived halftone pat-
halftone patterm,(x,y) can be computed by convolving tern is given by the convolution of the halftone pattern
the halftone patterp(x,y) with an approximation of the with the visual point-spread function, this can be directly

point-spread function of the human visual syst#xy): related to the total potential function for the electron
distribution. A method recently described by ¥tal.
P(X,Y) = p(X,Y)*V(X,Y). (18) alsouses an “electrostatic force” model to optimize blue-

noise dither patterr&.

As noted above, the convolution must take into account
the periodic nature of the dither pattern. The perceive@.2.4 Other Void-and-Cluster VariantsA number of
halftone pattern is analogous to the filtered halftone patether variations of the void-and-cluster technique have
tern computed for the void-and-cluster technique, exalso been investigated. Lin has developed a void-and-
cept that a visual model is used for the filter function.cluster based algorithm that uses a filter function that
For an “ideal” halftone pattern, the resulting perceivedvaries with gray leve®? In particular, the width of the
halftone pattern is perfectly uniform. However, for a realfilter function is varied to account for the fact that the
halftone pattern, the perceived halftone pattern is comaverage distance between the minority pixels changes
prised of a lumpy surface having local minima andas a function of gray level. (The minority pixels are those
maxima corresponding to the voids and clusters in théhat occur less frequently in the halftone patterm,
halftone pattern. for halftone patterns that are lighter than a 50% gray

To determine halftone patterns for the remainingevel, the minority pixels will be black.)
gray levels in a sequential manner, it is necessary to add During the optimization process for a given gray
(or subtract) an appropriate number of dots from thdevel, the average separation between the minority pix-
halftone pattern. It is intuitive that the dots are typicallyels is determined. For gray levels near the 50% level,
added to pixel locations where the perceived halfton¢he average separation is relatively small. For gray lev-
pattern is high, or conversely are subtracted from pixetls near the extreme ends of the tone scale the average
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separation is large. The average separation is calculatedchere

by dividing the total number of pixels in the halftone r=(x2+y?)v (23)
pattern by the number of elements with the minority
value and taking the square root. Cis a constant (nominally 2), andis the relative angle

A function is determined by “trial and error” to re- from the center pixel. Because the filter function has a
late the average separation value to a region of suppddwer value in the diagonal direction, dots are preferen-
value for the filter function that gives pleasing resultstially placed in diagonal arrangements. Barton argues that
when examined visually. The region of support value ighis is preferable in many cases due to the dot interac-
related to the width of the filter function. Lin reports tion characteristics of typical printers. Qualitatively, this
that the use of this variable filter function results in feweris also consistent with the angular dependence of the
objectionable artifacts in the halftone pattern. This aphuman visual system sensitivity.
proach can be compared to using a visual model where
the viewing distance is varied as a function of the gray 3 Blue-Noise Matrices for
level. Tuning the filter size as a function of gray level Multilevel Halftoning
allows the pattern to be optimized for the viewing dis-
tance that will be most susceptible to artifacts. This mayeriodic halftoning techniques can easily be generalized
be quite appropriate in practice where observers frefor use with multilevel output devic&%2¢ Typically,
guently will view an image from a series of viewing dis- such techniques are referred to as multilevel halftoning,
tances to evaluate quality. or sometimes as multitoning. Figure 16 shows a gener-

Lin has also described a refinement of this basialization of the ordered-dither technique for application
method that incorporates a model of the dot structuréo multilevel devices. It can be seen that this is equiva-
for the printer? In this case, instead of applying the fil- lent to the binary implementation shown in Fig. 2, ex-
ter function directly to the binary halftone pattern, acept that the threshold operation has been replaced by a
model of the dot reproduction characteristics for the parquantization operation. The dither signal is added to the
ticular printer being addressed is used to predict the demput signal to form a modulated input signal. The quan-
sity distribution of an image formed using the halftonetizer then associates one of the allowable output levels
pattern. The resulting density distribution is filtered towith each of the possible values of the modulated input
identify the largest clusters and voids. Several types odignal. The quantizer can conveniently be implemented
dot models were discussed including overlapping circuas a look-up table (LUT). If a uniform quantizer is used,
lar dots and Gaussian dots. To use this approach, it iscan also be implemented using a divide operation, or
necessary to form a higher resolution representation gfossibly as a binary bit shift.
the halftone image where each image pixel is broken
down into a set of sub-pixels. 1Y) _ o(xy)

Barton has described another approach for design- U
ing halftone patterns that involves examining the spatial
dot distribution to look for the largest voids and clusters

x (column #) Xd
of dots?* In this case, the halftone patterns are designed = mod M | dither matrix

by growing the patterns from the lightest tone level to dixg Y9
the darkest tone level. As in the methods described by
Ulichney and Lin, a filter function is used to determine

the pixel location where a dot should be added to the  Figure 16. Basic multilevel dither implementation.
halftone pattern. (Barton refers to the filter function as a

“cost function”.) Similar to Lin, Barton varies the filter

function with tone level. However, instead of varying Generally, it is desirable to adjust the amplitude of
the function form of the filter itself, he varies the searchthe dither signal to equal the size of the quantization in-
radius used to determine whether a dot should be irterval. This produces dither patterns with the minimum
cluded in the summation. This is equivalent to multiply-possible modulation level. For example, consider the case
ing the filter functionf(x, y), by a cylinder function that where an input imagkx,y) hasm different levels, and it

varies in radius: is desired to produce an output imagé,y) havingn
) — 2 4 \2\1/2 possible output levels. If a uniform quantizer is used,
PGy = 106y)eyll(x +y?)*R], (20) the size of the quantization interval in terms of the input
whereR is the search radius, and levels will be given by the maximum input level divided
by the maximum output levelm-1)/(n-1). If the dither

a, 0<r<l1 matrix, d(X,,Y,) stores dither values in the rang® p-1,
eyl(r) = B, r>1 (21)  the amplitude of the dither signal must be rescaled to
’ match the quantization interval.
To force diagonal correlation of adjacent dots in the out-  When the dither matrix is properly rescaled, the multi-
put image, Barton introduces an angular dependent fillevel dither process can be represented by the equation
ter function

1 Ol (x, y) +d(xy,y,)/ plm =D /(n - DO

(x,) = , O(x, y) = int 24
Fy) = T Gmaa V2 /) (22) (%,7) = intQ (m-D/n-1 H (@4
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where INT() indicates an integer truncation. It can beWhere

seen that the dither matrix value is scaled and added to c.-Hm Q? - 1@
the input image. The resulting modulated input value is ! -1 n
guantized by dividing the result by the size of the quan- m
tization interval, f-1)/(n-1), and rounding down to the Cr=—Cs=
next integer value. Equation (24) can be rearranged into P
a form that is more convenient in many cases:

m (27)

In practice, for computational efficiency, the scale fac-
tor C, can be implemented as a LUT, the dither matrix

Ox.y) values can be premultiplied by the valdg and the di-
_ i /m = Dl = D/ nll e, ) + (m/ np)d (g, )] vide byC, can be implemented using a LUT or a binary
= int[3 T H (25)  bit-shift operation.

This multilevel dither algorithm can be used to adapt
If both m andn are powers of 2, the divide operation any conventional binary dither matrices, including blue-
associated with the quantizer can now be accomplishembise dither matrices, for use with multilevel output de-
using a binary bit-shift. However, the input value mustvices. Figure 17 shows a series of images generated using
now be scaled before the dither signal is added to it. Thithe multilevel halftoning method given in Fig. 16. In this
equation can be simplified somewhat by defining a seease, a 1& 16 blue-noise dither matrix generated using
ries of constants the simultaneous visual cost optimization technique de-
scribed in Sec. 2.1.3 was used. It can be seen that even
in the magnified state, the multi-toned image approaches
(26) the quality of the original image when 16 output levels

g
O(x, y) - intECll(x’ y) + CZd(xd7 xd) O

0 Cy 0

(d)

Figure 17.Images generated using multilevel blue-noise dither algorithms with 16 x 16 dither matrix: (a) original, (b) 2 output
levels, (c) 4 output levels, and (d) 16 output levels.
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are used. When the images are printed at 300 dpi, the The LUT-based approach also has the advantage that
difference is essentially indistinguishable. any conceivable dot growth pattern can be specified.
Although any blue-noise dither matrix can be usedwith the conventional implementations, as the input gray
with the above implementation for multilevel output level is increased all of the pixels in the dither pattern
devices, the results are not necessarily optimalare generally increased to the second output level be-
Spaulding and Ray have investigated methods to genefere increasing any of the pixels to the third output level.
ate blue-noise dither matrices that were optimized spdn some cases, it might be desirable to increase the gray
cifically for multilevel output device&. The dither level of one pixel in the dither pattern through all of its
matrix design approach used in this case is very simildevels before starting to increase the gray level of a sec-
to the simultaneous visual cost optimization techniquend pixel. This would be possible with the LUT-based
described in Sec. 2.1.3. The difference being that thapproach, but would not be possible with the first imple-
costs for each of the levels within a quantization intermentation. Any pattern that can be created with the first
val are combined, rather than the cost for all of the inpuimplementation can also be created using the LUT-based
levels. A slight modification to the implementation ar- approach, but the reverse is not true. Although blue-noise
chitecture was also introduced that permitted the use afither matrices have not been designed to specifically
non-uniform quantization functions. As shown in Fig. 18,take advantage of this extra flexibility, the texture pa-
a variable scale factor is included that permits the mag-ameter described by Millest al can be used to design
nitude of the dither value to be adaptively adjusted as BUTs with a variety of characteristics from a convenal
function of the size of the quantization interval. In thisdither matrix. This feature can be particularly important
particular implementation, the dither values are nomifor devices, such as electrophotographic printers, that
nally stored as values in the range betwe®f2 and the do not produce uniform density regions very well.
scale factor is simply the size of the quantization inter-
val. Since the size of the quantization interval may vary 4 Blue-Noise Matrices for Color Images
as a function of the input level, this value can be deter-
mined using a LUT addressed by the input code valueMany color imaging devices produce binary output for
each of the color planes. Typically the color planes are
red, green, and blue (RGB) for additive devices, or cyan,
magenta, and yellow (CMY), or cyan, magenta, yellow,
and black (CMYK) for subtractive devices. Generally
halftone images for these applications are generated for

1(xy)

mﬁmﬁ dither matrix each of the color planes independently following any
dOxg Vi) color correction/calibration steps. It is important to note
y (row #) - Yd | range=+1/2 that the color reproduction characteristics of the device
Y are usually a function of the halftoning method that is
Figure 18. Multilevel dither implementation using non-uniform used. It is, therefore, necessary to design the color cor-
quantizer. rection process knowing the halftoning method.

For the present discussion we assume that an or-
dered-dither algorithm is used to halftone each of the
Multilevel dither can also be implemented usingchannels independently. In general, a different dither
other algorithm architectures. One such approach, denatrix can be used for each of the different color chan-
scribed by Miller and SmitF and Mille?® is shown in  nels. Therefore, an important question is how the dither
Fig. 19. In this case, the modularly addressed matrix imatrices used for the different color channels should be
used to store pointers to a series of dither LUTSs, rathatesigned to maximize image quality.
than storing actual dither values. The results of the dither
process for each of the possible input levels are pre-cad.1 Dot-on-Dot Matriceslf the same halftoning pattern
culated and stored in these dither LUTs. The algorithnis used for each of the color channels, this is known as
can now be executed with only table look-ups rather thatdot-on-dot” printing. A sample image generated using
the adds and multiplies necessary in the first implementhis method with a 128 128 dither matrix is shown in
tation. Effectively, this trades off memory requirementsFig. 20(a). Although this approach is the easiest to imple-
for a faster execution speed. This approach is somewhatent, it is rarely used in practice because it results in
analogous to the binary dither arrangement shown ithe highest level of luminance modulation, and addition-

Fig. 3. ally the color reproduction characteristics will be most
sensitive to registration errors.
O'Em) To understand these effects consider a neutral patch
] created using equal levels of cyan, magenta, and yellow.
X (column # d y With the dot-on-dot approach, the halftone patterns pro-
mod e _ %% duced for each color channel are identical. Therefore,
eector &» 0-(n-1) whenever a cyan dot is printed, a magenta and yellow
: dot are also printed in the same location. As a result, the
(oot Sch el image is formed using a series of black dots on a white
in the dither matrix) background. This is illustrated in the neutral regions in

Figure 19. Multilevel dither implementation using dither LUTs. the image shown in Fig. 20(a). With a little thought, it
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can be seen that this must produce a larger level of |&.2 Independently Derived MatriceBecause of the
minance modulation than the case where the colored dopsoblems associated with dot-on-dot printing, it is usu-
are not coincident, therefore, the halftone patterns arally desirable to decorrelate the halftone patterns used
generally more visible to an observer. for each of the color channélsin the graphic arts field,
There is also be an increased sensitivity to registrathe preferred solution has typically been to decorrelate
tion errors. This can cause the reproduced color to drifthe halftone patterns by rotating the halftone patterns to
from page-to-page, or even within a page, as the regiglifferent “screen angles.” For conventional graphic arts
tration characteristics change. This increased sensitiralftone methods, this rotation can either be accom-
ity to registration errors results in the fact that if one ofplished optically or digitally. However, this solution is
the color planes is misregistered relative to the othergienerally not practical for low-resolution printing ap-
all of the dots shift together. This could cause a neutrgdlications where ordered-dither is useful.
patch to be formed by cyan dots next to a set of red dots, A number of techniques can be used to decorrelate
instead of a set of black dots on a white backgroundhe halftone patterns used for ordered-dither. Parker and
Since a cyan dot next to a red dot does not generallMitsa have enumerated several of these methddse
produce the same integrated color as a black dot, thsolution is to use independently derived dither matrices
causes the reproduced color to change. for each color channel. To effectively decorrelate the

(a).... i ..(.b)

(d)
Figure 20. Images generated using 12828 blue-noise dither matrices: (a) dot-on-dot matrices, (b) shifted matrices, (c)
inverted magenta/shifted yellow matrices, and (d) jointly optimized matrices.
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matrices for each channel, different random seeds coulkeiach other. For lighter gray levels the dots for the first
to be used to initialize the blue-noise dither optimiza-color channel will tend to be placed in the voids of the
tion process. Using uncorrelated matrices significantlysecond color channel. The primary limitation of this ap-
reduces the amount of visible luminance modulation proproach is that most color imaging applications use more
duced in the final image, however, it is not optimumthan two color channels. Therefore, in practice, some
because there is still a random overlap between the dotéher method must be used to determine at least one of

of the different color planes. the color channels. For example, a first dither matrix
could be used for the magenta channel, an inverted ver-
4.3 Shifted Matrices sion of the magenta dither matrix could be used for the

Another approach that can be used to decorrelateyan channel, and a shifted version of the magenta dither
the matrices is to spatially shift the phase of the dithematrix could be used for the yellow channel. In many
matrix patterns for each channel relative to each othecases, this may produce acceptable results because the
For example, a blue-noise dither matrix, determined usyellow channel generally contributes less to the lumi-
ing one of the design techniques discussed above, cammnce modulation.
be used for the cyan color channel. This dither matrix A sample image generated using this approach is
can then be altered by shifting the phase of the ditheshown in Fig. 20(c). Again, the same basic X828
pattern some number of pixels to the right for use withdither matrix is used. However, in this case, the magenta
the magenta color channel. Similarly, the phase can bmatrix was inverted relative to the cyan matrix, and the
shifted by some number of pixels in the vertical direc-yellow matrix was shifted 64 pixels vertically. Overall,
tion for the yellow color channel. The phase shifts carhis image shows a small improvement in the luminance
be accomplished by computing a new set of dither mamodulation relative to the shifted matrices image. How-
trices, or by simply adding an offset to the image rowever, there are some mildly disturbing texture contours
and column addresses before the modulo operations atteat can be seen just below the gray scale. These are
applied to determine the dither matrix indices. The reformed near a code value of 128 where the cyan and
sults should be essentially equivalent to those obtaineghagenta patterns are exact inverses of each other.
with totally uncorrelated matrices.

A sample image generated using shifted dither ma4.5 Jointly Optimized Matrices
trices is shown in Fig. 20(b). The same 828 dither Each of the approaches discussed in Sections 4.2 to
matrix that used to generated Fig. 20(a) was used here4 has the advantage that the halftone patterns for the
as well. However, the magenta dither pattern was shiftedifferent color channels are effectively decorrelated,
64 pixels horizontally, and the yellow dither pattern wastherefore, the resulting halftone image should produce
shifted 64 pixels vertically. It can be seen that the overlower amounts of luminance modulation and sensitivity
all level of pattern visibility is substantially lower than to registration errors relative to the nominal dot-on-dot
for the dot-on-dot case. Any overall color differenceprinting case. However, none of these techniques pro-
between the two images is due to the fact that the colatuce images that will exhibit optimal behavior, particu-
reproduction characteristics of a halftone device will bdarly with respect to the visibility of the halftone patterns.

a function of the halftoning algorithm. In a real applica- We have recently developed a method that can be
tion, the output would be color corrected for the speused to simultaneously design a set of blue-noise dither
cific approach that is implemented. However, for thismatrices for each of the color channels for a color out-
example, no custom correction was done. put device. The matrices are designed to provide an out-

The amount of decorrelation can be controlled someput image having halftone patterns with minimum
what by adjusting the amount of phase shift that is apvisibility to a human observer. In the simplest version
plied. The greatest decorrelation is typically obtained byf this method, the halftone pattern visibility is mini-
shifting the phase by half the dither matrix size. In genmized by determining the dither matrices that minimize
eral, the argument could be made that the phase of thike visible luminance modulation. This is frequently
patterns should be shifted by half of the dominant halfappropriate since the human visual system is more sen-
tone period to ensure that the dots have a higher prolsitive to luminance modulation than it is to chrominance
ability of not overlapping. However, since the dominantmodulation. However, the method can easily be extended
period will be a function of gray level, this is generally to include terms in the cost function that reflect the vis-

not a practical solution. ibility of the chrominance modulation as well as the lu-
minance modulation.
4.4 Inverted Matrices The preceding monochrome dither matrix design

Another approach is to use an inverse dither matrixnethods can be adapted to determine the set of color
for one or more of the color channels. In this case, a nedither matrices that have minimum visibility to a human
dither matrix is calculated by inverting the polarity of aobserver. To use the visual cost function optimization
first matrix. If the dither matrix has values in the rangeapproaches, it is first necessary to define a cost function
0 to 255, the dither values for new matrix will simply berelated to the visibility of the halftone pattern. For the
equal to 255 minus the dither values for the first matrixcase where only the luminance component of the half-
Using this approach will minimize the number of dotstone pattern visibility is considered, the first step is to
that will overlap with each other for two of the color compute a spatial luminance distribution from the half-
channels. In fact, for a 50% gray level, the two matricesone patterns that are used for each color channel.
will produce halftone patterns that are exact inverses of One method that can be used to determine the spa-
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tial luminance distribution is by measuring the luminancehe visual cost associated with the halftone patterns can
values that result when each of the individual colorantbe minimized. For example, the bit patterns for all of
(e.g., cyan, magenta, and yellow) are used, as well ake pixel values can be optimized simultaneously. In this
the luminance values that result for the possible combiease a total cost value is computed that is a combination
nations of the colorants (e.g., red = magenta+yellowpf the individual cost values for a set of CMY color val-
green = cyan+yellow, blue = cyan+magerdadblack  ues. An optimization technique such as stochastic an-
= cyan+magenta+yellow). To determine the luminancenealing can then be used to determine the bit patterns
distribution, the halftone patterns for each of the colothat produce the minimum total cost value.

channels can be superimposed and the luminance value One form of the total cost that can be used is a
corresponding to the resulting combination of colorantaveighted sum of the individual cost values

can be assigned to each of the pixel locations.

Another approach that can be used to compute the
spatial luminance distribution is to estimate it's value
by calculating a weighted sum of the individual half-
tone patterns wherew,,,, is a weighting factor, and the summation is

channels computed over a certain set of CMY color values. The
le,y)= 5 wO,(x,y), (28)  choice of the particular subset of CMY color values, as
= well as the weights assigned to each color value deter-

whereO,(xy) is the output image bitmap for théh color mine the relat|ve importance of various parts of color
channel, andv, is a weighting factor for each channel. space during ﬂl]e %pﬂmlzatlonlprolcess. believed to b
The weighting factors should generally reflect the relativeih For example, ift (Ia neutlra C(f) orsare | elleve | to be
contributions of each channel to the luminance signal. Typi- € most important color values for a particular printing
cally, yellow would have the smallest contribution, andappllcatlon the set of CMY color values havmg equal
magenta would have the largest contribution. An examplélmoumS of cyan, magenta, and yellow can be included
of typical weights would bev, = 0.3,w, = 0.6,w, = 0.1, N the summation. If all of the neutral colors are equally
Once the luminance distributidix,y) for a{ set of mportant, then the weighting factors can be defined to

halftone patterns has been computed, the visibility Opprmallze the individual cost values so that they have

the luminance modulation can be estimated using a cogfméla(; .m?r?nltu?e?.c?ﬂtb{er ?olor ;/alues tha; can belln-
function analogous to that shown in Eq. (1): cluded in the set o colorvalues are primary color

series where one color channel is varied throughout its
2 range, and the other color channels are set to 0. CMY

costomy =”|LCMY(fx’fy)V(fx’fy)| df.dfy- (29)  color values for particularly important colors, such as
skin-tones, sky colors and grass colors can also be in-

In this case, the Fourier transform the luminance districluded. Yet another set of CMY color values that could
bution, Lcyy(fofy), is used in the formula instead of the be used would be all of the possible combinations of the

Fourier transform of the halftone pattern itself. The CMYallowable color values for the different color channels.

subscript reflects the fact that the cost is associated with  Alternatively, the halftone patterns for each input
the halftone pattern for a particular color value. It is fredevel can be determined sequentially rather than simul-
quently useful to work with a discrete form of this costtaneously. In this case, a halftone pattern for a first in-

costyy, = z Weny oSt omy s (31)
oty

function put level is initially determined, and then halftone
M,-1M,-1 ) patterns for the remaining input levels are determined
costoyy = > |LCMY,Lj1/ij| , (30) one-by-one. One method that has been used successfully
=0 j=0 is to first determine the cyan halftone pattern for a cer-

tain input level, and then to determine the magenta and
whereLcyy; is the (,j)’'th element of the discrete Fou- yellow halftone patterns for that input level in turn. When
rier transform of the luminance distribution for a par-the halftone patterns for each of the color channels has
ticular CMY color value, and/; is the human visual been determined for that level, the next level can then
system sensitivity for the frequency corresponding tde considered. Other optimization sequences are also
element {j). As was discussed above, it may be desirpossible. For example, the halftone patterns for each of
able from a computational efficiency point of view to the input levels for one color channel can be determined
use the spatial domain versions of these cost functionfirst. When the halftone patterns for the first color chan-
These forms follow directly using Parseval’s theoremnel have all been determined, the remaining color chan-
Other types of cost functions can also be defined, whichels can be optimized sequentially. As before, the
include terms relating to the visibility of the chrominanceindividual levels may be optimized using a consecutive
modulation in addition to terms relating to the visibility sequence, or using other types of sequences such as a
of the luminance modulation. These types of cost funckinary-tree.
tions can be used to more accurately reflect the overall The step of determining halftone patterns for an ini-
halftone pattern visibility. However, in many cases thetial input level can be performed in several ways. For
improvement in the final results do not justify the addedexample, a first set of halftone patterns can be randomly
complexity in the optimization process. formed, and a stochastic annealing procedure can be used

As with the monochrome dither matrix design meth-to minimize a visual cost function. Alternatively, the ini-

ods discussed above, there are a number of ways thidl halftone patterns can be formed from monochrome
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blue-noise dither matrices. For example, to initialize gointly optimizing blue-noise matrices for a color out-
set of dither matrices for a neutral input value, the methogut device by simply replacing the halftone pattern with
shown here in pseudo-code can be used: the luminance distribution for the set of halftone pat-
terns. The perceived luminance distribution is calculated
by convolving the luminance distribution with an ap-
proximation to the human visual system point-spread
function. Dots can then be added/subtracted at the
minima/maxima of the perceived luminance distribution.
If more than one dot needs to be added or subtracted,
the dots should generally be added/subtracted one at a
—— time and the perceived luminance distribution recom-
patteryame(i.j) = 0 uted after each ste
1, (32) Puteg: P :

This approach can also be extended to include con-
wherenum_channelss the number of color channels, tributions from the perceived luminance distributions for
d(i,j) is the monochrome dither matrigatternme(i.j) other colors in addition to the neutral colors. One way
is the initial halftone pattern for a given color channel,to do this is to compute a combined perceived luminance
andlevel is the input level for the initial halftone pat- distribution
tern. It should be noted that the input level for the initial
halftone pattern must be less than, or equal to, the num-
ber of levels in the monochrome dither matrix divided
by the number of color channels. For a monochrome
dither matrix having 256 different levels, and a systenwherew,, is a weighting factor, ¢\ (x,)) is the per-
having three color channels this limits the input level toceived luminance distribution for a certain CMY color
be less than or equal to 85. value, and the summation is computed over a set of CMY

If the initial halftone patterns are formed using thiscolor values. Once the combined perceived luminance
approach, the resulting patterns are non-overlapping, ardistribution is computed, dots can be added/subtracted
reflect the basic frequency distribution characteristicdy finding the respective minimum or maximum. One
of the monochrome dither matrix. Both of these characset of CMY color values that has been found to be quite
teristics are desirable, but the resulting patterns may naiseful is a neutral value, combined with the correspond-
be optimum relative to the global minimum visibility ing pure color. For example, if the bitmap for the cyan
solution. For this reason, it may be desirable to formthannel for input value 100 were being optimized, the
patterns using this method, and then refine them usingombined perceived luminance distribution can be cal-
an optimization method such as stochastic annealing. culated as a weighted average of the perceived luminance

When a sequential optimization approach is useddistribution for the neutral color where cyan, magenta,
the cost value can be computed from a single color valugnd yellow all have a value of 100, with the perceived
(typically a neutral color value corresponding to the in{uminance distribution for the pure color where cyan has
put value currently being optimized), or can be a combia value of 100, and magenta and yellow are zero.
nation of cost values for a set of color values. Using a A sample image generated using jointly optimized
combination of cost values ensures that the visibility 0fl28 x 128 blue-noise matrices is shown in Fig. 20(d). A
the halftone patterns generated for color values in ongisual potential optimization approach was used start-
part of color space is not optimized at the expense dhg from a set of initial patterns at level 85 formed from
other parts of color space. One combination of cost vala monochromatic blue-noise dither matrix using Eq. (32).
ues that has been found to be useful is to compute Bhe dither matrices were formed by sequentially add-
weighted average of the cost value for a neutral coloing/subtracting pixels from the halftone patterns at the
value, and a corresponding pure color value. For exmin/max of the combined perceived luminance distri-
ample, if the bitmap for the cyan channel for input valuebution. In this case, the combined perceived luminance
100 was being optimized, the combined cost value cadistribution was determined using a simple average of
be a weighted average of the cost for the neutral colahe luminance distribution for a neutral patch, and a pure
where cyan, magenta, and yellow all have a value of 10@olor for the current color channel. It can be seen that
with the cost for the color where cyan has a value ofhe overall halftone pattern visibility is noticeably im-
100, and magenta and yellow are zero. proved relative to the three other examples in Fig. 20.

When large dither matrices are being optimized, the  An interesting way to compare the color halftone
visual cost based optimization techniques have beepatterns is to look at the fraction of the image covered
found to take a substantial amount of processing time tby the cyan, magenta, and yellow dots, as well as their
complete even with very powerful computers. For thistwo- and three-color combinations as a function of gray
reason, it may be desirable to use other optimization techevel for a neutral patch. Figure 21 shows a series of plots
niques, such as the visual potential technique describegenerated for the dither matrices used to produce the
above, that converge more quickly, even if the final soimages in Fig. 20. Considering Fig. 21(a) it can be seen
lution is slightly less optimal than could be found usingthat only black and white dots are used to produce the
the slower techniques. neutral patches at every gray level. As the gray level is

The visual potential technique discussed in Secincreased, the proportion of black dots increases, and
tion 2.2.3 can be extended to the current problem ofhe proportion of white dots decreases correspondingly.

for channel= 0 tonum_channels
for eachi,]

{
if ((d(i,j) > =channetlevel) and €(i,j)

<(channel+ 1) * leve)

patterr}hanne(i !j ) = 1
else

lp(x’y) = z wCMYlp,CMY(?C,y), (33)
CMY
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Figure 21. Fractional coverage of paper as a function of dot area for neutral patches: (a) dot-on-dot matrices, (b) shifted
matrices, (c) inverted magenta./shifted yellow matrices, and (d) jointly optimized matrices.
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This is characteristic of the dot-on-dot approach. level, error diffusion fundamentally maintains a small
In Fig. 21(b) it can be seen that the characteristicamage quality advantage.
of the shifted matrices approach are quite different. The To illustrate this, consider a halftone pattern gener-
fractional coverage of the cyan, magenta, and yellow dotated for a gray level of 240. To obtain this tone value, a
are approximately equal at all gray levels, as are the co@ot needs to be formed at one out of every 16 pixels.
erages for the red, green, and blue two-color combingerror diffusion algorithms accomplish this by produc-
tions. Since the shifted matrices produce halftoneng a halftone pattern having a fundamental period of
patterns that are effectively uncorrelated we would exabout 4 pixels in both the vertical and horizontal direc-
pect that the fractional coverages should approximateltions. If a blue-noise dither pattern were designed spe-
follow the Neugebauer equatiofts, cifically for this gray level it would have the same basic
f,=(1=0) (1-m) (1-y) characteris_tics. Now cons_ider a gray level of 239. To
f= (1 —m) (1-y), f = ’(1 —om(1 -y) produce this tone value it is necessary to add one more
¢ Lo ' dot for every 256 pixels. Error diffusion naturally ad-

;yz ((i :é:))n(]:)L/—m)y, f =c(1—my (34) justs the fundamerjtal period of the_ halftpne to an aver-
f, = cm(1 —y), fi: cmy, age of about 3.9 pixels to accomplish this. However, to

design a blue-noise pattern for a gray level of 239 that is
wherec, m, andy are the fractional dot areas for the correlated with the pattern for a gray level of 240, the
cyan, magenta, and yellow halftone patterns, fanf, other dots must be left in the same locations and the new
fm f,, T, Ty, f, @andf, are the resulting fractions of the dots must be inserted into the pattern. Therefore, instead
paper covered by white (no ink), cyan, magenta, yellowpf adjusting the dot spacing to be an average of 3.9 pix-
red (magenta+yellow), green (cyan+yellow), blueels apart, some dots are still 4 pixels apart, and some
(cyan+magenta), and black (cyan+magenta+yellow)dots are be closer where an extra dot has been inserted
respectively. In this case the values om, andy are in the middle of a void in the first pattern. This neces-
all equal since the neutral colors are being consideredarily adds some spectral power in the low spatial fre-
It can be shown that the curves in Fig. 21(b) are indeeduency regions. Therefore, the resulting halftone pattern
consistent with the expected values from Eq. (34). are less optimal than the error diffusion patterns. Con-
The fractional coverage characteristics for the insequently, this implies that blue-noise dither will never
verted matrices approach, shown in Fig. 21(c), are quitbe able to produce optimal halftone patterns over the
different from either of the previous graphs. Because thentire tone scale to the extent that error diffusion can.
cyan and magenta matrices are inverses of each othétpwever, for many applications, the quality level that
the blue and black coverages remain at zero until thean be obtained with blue-noise dither is adequate and
50% dot area is reached. This is because cyan and mi&e simplicity and speed of the algorithm out-weigh any
genta dots never occur at the same pixel location untguality loss.
all of the pixel locations are filled with one or the other.
However, since the yellow halftone pattern is effectively 6 Conclusions
uncorrelated with the cyan and magenta patterns, two-
color combinations that include yellow (red and green)This paper has reviewed and compared the various tech-
start to form even for the smallest dot areas. niques that have been used to develop blue-noise dither
Figure 21(d) shows the fractional coverage characmatrices. In particular, a series visual cost function based
teristics for the jointly optimized matrices. It can be seertechniques were presented that have been developed by
that up to a 33% dot area there are only single color inBullivanet al. Additionally another family of techniques
colors present. This is due to the fact that the initial patwas discussed that involves designing the dither matri-
tern was formed using non-overlapping bitmaps at thiges by analyzing the spatial dot distribution. This group
dot area. Above the 33% dot area, the two-color combiincluded the iterative constraint method developed by
nations begin to form. Note that green dots are forme#litsa and Parker, and Ulichney’s “void-and-cluster”
most rapidly due to the fact that green contributes leasechnique, as well as a number of other variations.
strongly to the luminance modulation since it is the light-  The visual cost function based techniques have the
est of the two-color combinations. Black dots are theclosest tie to the response of the human visual system.
last to start forming since they have the largest effect omherefore, they should offer the greatest opportunity to

the luminance modulation. design halftone patterns that have the minimum visibil-
ity to the human observer. The current approaches uti-

5 Comparison of Blue-Noise Dither and lize a simple linear system model of the human visual
Error Diffusion system, although other more sophisticated models could

be easily investigated. The largest drawback of this ap-
Blue-noise dither halftoning methods have been foungroach is the amount of computation time needed to de-
to produce images with pleasing visual characteristicssign a dither matrix of reasonable size. Additionally, the
The resulting image structure resembles the results thatochastic optimization techniques that have been inves-
can be obtained using error-diffusion algorithms. How-tigated have been found to rarely converge to a global
ever, the computational complexity associated with theninimum. This is largely due to the high dimensionality
ordered-dither approach is much simpler than that obf the problem.
error diffusion. Because of the fact that the blue-noise  The techniques, such as the iterative constraint meth-
dither patterns must be correlated as a function of gragds and the void-and-cluster algorithm, that attempt to
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optimize the blue-noise patterns by simple analysis of4.
spatial dot distribution have the advantage that they are
relatively fast to compute compared to the other meth-
ods. Because of their speed, they can frequently be used
to design larger matrices than can practically be doné.
otherwise. Although these methods generally do not pro-
duce patterns that are truly optimal relative to a visual
cost function, it has been found that the quality increase.
associated with the larger matrix size usually makes up
for any deficiencies. As a result, these methods have been
found to produce good quality results. Although the 7.
methods that use a filter size that is adaptive with gray
level may offer some advantages, very acceptable dither
matrices have been designed with even the simpler als.
gorithms.

All of these methods can produce dither matrices
that exhibit similar visual characteristics, although there9.
are subtle differences between the resulting patterns. In
all cases, the results are quite sensitive to the form of

the filter function that is used. Even the approaches thato.

are tightly coupled to a model of the human visual sys-

tem have parameters, such as viewing distance, that car.

have a large effect on the quality of the final results. In
fact, the differences between the results obtained using

different forms of the filter function/visual cost func- 12.

tion have generally been found to be larger than the dif-
ferences between the different optimization techniques.
Ways to extend the basic blue-noise dither tech-

niques to multilevel and color output devices were also13.

described. At 300 dpi, the multilevel blue-noise dither
approach has been found to produce photographic qual-

ity images using only 16 output levels. Recent advanceg4.

were described for the design of jointly optimized dither

matrices for color output devices. It was demonstratedL5.

that these results provide an incremental improvement
in the quality over the conventional solutions for color
output devices. However, to take full advantage of these

improvements requires that the registration errors assot6.

ciated with the output device be relatively small. It is
expected that if the registration errors are very signifi-
cant, the optimum result will move toward uncorrelated
matrices.
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